Binary Adders
 Lecture 6 Section 2.5

Robb T. Koether
Hampden-Sydney College

Thu, Jan 23, 2014
(9) Binary Addition

(2) Half Adders

(3) Full Adders

4 Assignment

Outline

(9) Binary Addition

2 Half Adders

(3) Full Adders

4) Assignment

Binary Adders

- A half adder (HA) adds two bits and produces a sum bit and a carry bit.
- A full adder (FA) adds two bits and a carry-in bit and produces a sum bit and a carry-out bit.

Outline

(1) Binary Addition

(2) Half Adders

(3) Full Adders

4 Assignment

A Half Adder

Input		Output	
p	q	sum	carry
1	1	0	1
1	0	1	0
0	1	1	0
0	0	0	0

- Addition of binary digits by a half adder.

A Half Adder

- We see that
- The sum bit is $p \oplus q$.
- The carry bit is $p \wedge q$.
- Design circuits for $p \oplus q$ and $p \wedge q$.
- Combine them into a single circuit.

Outline

(1) Binary Addition

(2) Half Adders

(3) Full Adders

4 Assignment

A Full Adder

Input			Output	
p	q	carry-in	sum	carry-out
1	1	0	0	1
1	0	0	1	0
0	1	0	1	0
0	0	0	0	0
1	1	1	1	1
1	0	1	0	1
0	1	1	0	1
0	0	1	1	0

- Addition of binary digits by a full adder.

A Full Adder

- We can express the sum bit as

$$
(p \oplus q) \oplus c_{\mathrm{in}}=p \oplus q \oplus c_{\mathrm{in}}
$$

and the carry-out $c_{\text {out }}$ as

$$
(p \wedge q) \vee\left((p \oplus q) \wedge c_{\mathrm{in}}\right)
$$

- We can implement these two expressions in a circuit.

A Full Adder

- Use a HA to add p and q. This produces

$$
\begin{aligned}
& s^{\prime}=p \oplus q . \\
& c^{\prime}=p \wedge q .
\end{aligned}
$$

- Then use another HA to add $c_{\text {in }}$ to s^{\prime} to get the final sum and carry-out bits.

$$
\begin{aligned}
s & =s^{\prime} \oplus c_{\mathrm{in}} . \\
c_{\mathrm{out}} & =c^{\prime} \vee\left(s^{\prime} \wedge c_{\mathrm{in}}\right) .
\end{aligned}
$$

Circuits

Circuits

- Design a circuit for a full adder using two half adders.
- Design a circuit for an 8-bit adder using 8 full adders.

Outline

(1) Binary Addition

(2) Half Adders
(3) Full Adders
4) Assignment

Assignment

Assignment

- Read Section 2.5, pages 78-84.
- Exercises 1, 2, 7, 8, 13, 14, 17, 18, 21, page 94.

