Binary Adders Lecture 6 Section 2.5

Robb T. Koether

Hampden-Sydney College

Thu, Jan 23, 2014

э

DQC

2 Half Adders

Robb T. Koether (Hampden-Sydney College)

Binary Adders

Thu, Jan 23, 2014 2 / 15

2

DQC

ヨト・モヨト

I > <
I >
I

Binary Addition

2 Half Adders

3 Full Adders

Assignment

2

DQC

<ロト < 回ト < 回ト < 回ト

- A half adder (HA) adds two bits and produces a sum bit and a carry bit.
- A full adder (FA) adds two bits and a carry-in bit and produces a sum bit and a carry-out bit.

э

★ ∃ > < ∃ >

æ

DQC

Input		Output		
р	q	sum	carry	
1	1	0	1	
1	0	1	0	
0	1	1	0	
0	0	0	0	

• Addition of binary digits by a half adder.

э

DQC

- We see that
 - The sum bit is $p \oplus q$.
 - The carry bit is $p \wedge q$.
- Design circuits for $p \oplus q$ and $p \land q$.
- Combine them into a single circuit.

4 ∃ > < ∃ >

< 4 →

Binary Addition

2 Half Adders

Assignment

Robb T. Koether (Hampden-Sydney College)

æ

DQC

A Full Adder

Input			Output		
р	q	carry-in	sum	carry-out	
1	1	0	0	1	
1	0	0	1	0	
0	1	0	1	0	
0	0	0	0	0	
1	1	1	1	1	
1	0	1	0	1	
0	1	1	0	1	
0	0	1	1	0	

• Addition of binary digits by a full adder.

э

DQC

• We can express the sum bit as

$$({m p}\oplus {m q})\oplus {m c}_{\mathsf{in}}={m p}\oplus {m q}\oplus {m c}_{\mathsf{in}}$$

and the carry-out cout as

$$(p \wedge q) \lor ((p \oplus q) \wedge c_{in}).$$

• We can implement these two expressions in a circuit.

3

< ロト < 同ト < ヨト < ヨト

• Use a HA to add *p* and *q*. This produces

$$egin{aligned} egin{aligned} egi$$

• Then use another HA to add *c*_{in} to *s'* to get the final sum and carry-out bits.

$$egin{aligned} m{s} &= m{s}' \oplus m{c}_{\mathsf{in}}. \ m{c}_{\mathsf{out}} &= m{c}' ee (m{s}' \wedge m{c}_{\mathsf{in}}). \end{aligned}$$

3

2

590

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- Design a circuit for a full adder using two half adders.
- Design a circuit for an 8-bit adder using 8 full adders.

3

Binary Addition

3 Full Adders

æ

DQC

Assignment

- Read Section 2.5, pages 78 84.
- Exercises 1, 2, 7, 8, 13, 14, 17, 18, 21, page 94.

э